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The effect of surface topography on the nonlinear
dynamics of Rossby waves

By S.I. Abarzhi, O. Desjardins, H. Pitsch

1. Motivation and objectives

Boussinesq convection in rotating systems attracts a sustained attention of the fluid
dynamics community, because it has intricate non-linear dynamics (Cross & Hohenberg
1993) and plays an important role in geophysical and astrophysical applications, such as
the motion of the liquid outer core of Earth, the Red Spot in Jupiter, the giant cells in
the Sun etc. (Alridge et al. 1990). A fundamental distinction between the real geo- and
astrophysical problems and the idealized laboratory studies is that natural systems are
inhomogeneous (Alridge et al. 1990). Heterogeneities modulate the flow and influence
significantly the dynamics of convective patterns (Alridge et al. 1990; Hide 1971). The
effect of modulations on pattern formation and transition to turbulence in Boussinesq
convection is far from being completely understood (Cross & Hohenberg 1993; Aranson
& Kramer 2002).

It is generally accepted that in the liquid outer core of the Earth the transport of the
angular momentum and internal heat occurs via thermal Rossby waves (Zhang et al.

2001; Kuang & Bloxham 1999). These waves been visualized in laboratory experiments
in rotating liquid-filled spheres and concentric spherical shells (Zhang et al. 2001; Kuang
& Bloxham 1999). The basic dynamical features of Rossby waves have been reproduced
in a cylindrical annulus, a system much simpler than the spherical ones (Busse & Or
1986; Or & Busse 1987). For convection in a cylindrical annulus, the fluid motion is
two-dimensional, and gravity is replaced by a centrifugal force, (Busse & Or 1986; Or &
Busse 1987). Hide (1971) has suggested that the momentum and heat transport in the
core might be influenced significantly by so-called bumps, which are heterogeneities on
the mantle-core boundary. To model the effect of surface topography on the transport
of momentum and energy in the liquid outer core of the Earth, Bell & Soward (1996),
Herrmann & Busse (1998) and Westerburg & Busse (2001) have studied the nonlinear
dynamics of thermal Rossby waves in a cylindrical annulus with azimuthally modulated
height.

The models of Bell & Soward (1996), Herrmann & Busse (1998), and Westerburg &
Busse (2001) considered different regimes of the flow, and reported analytical and numer-
ical solutions for the system of conservation laws. Bell & Soward (1996) assumed periodic
boundary conditions in the radial direction and neglected the viscous friction in the fluid
interior. They found two types of convective patterns depending on the modulation am-
plitude: Rossby waves for small modulation amplitude and traveling waves with long
azimuthal length scale for large modulation amplitude. Herrmann & Busse (1998) and
Westerburg & Busse (2001) have accounted for the viscous friction in the fluid interior,
neglected the friction produced by the Eckman layer, assumed no-slip boundary condi-
tions in the radial direction, and found Rossby waves with quasi-periodic dependecies
in space and in time. Both rigorous studies, the work by Bell & Soward (1996), and by
Herrmann & Busse (1998) and Westerburg & Busse (2001) compliment each other and
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identify several important features of the modulated convection. A need still remains for
a model, which quantitatively and qualitatively describes the effect of modulations on
Rossby waves in a wide range of the forcing parameters and convection intensity, and
which can compare this inhomogeneous system to other pattern-forming systems (Cross
& Hohenberg 1993; Aranson & Kramer 2002). Here we suggest a model to study the
effect of surface topography on the nonlinear dynamics of thermal Rossby waves.

2. Pattern-forming system with modulated forcing

For rotating cylindrical annulus with homogeneous boundary conditions, the nonlinear
dynamics of thermal Rossby waves are described by a complex Ginzburg-Landau equation
in terms of amplitude A, whose magnitude determines the convection intensity, and whose
phase describes changes in the position and direction of the convective rolls. We refer
the reader to Busse & Or (1986) and Or & Busse (1987) for details. For heterogeneous
systems, a rigorous derivation of the amplitude equation from the conservation laws has
not been accomplished yet (Cross & Hohenberg 1993; Aranson & Kramer 2002). To
model the nonlinear dynamics of slightly inhomogeneous systems, one usually applies
the Ginzburg-Landau equation with forcing. As an example, one may consider pattern
formation in the presence of a mode associated with a conserved physical quantity, such as
the Rayleigh-Benard convection driven by surface tension, which has been considered by
Siggia & Zippelius (1981), Tribelsky & Velarde (1996), Matthews & Cox (2000). Other
examples are convection in liquid crystals driven by a stochastic electric field (Meyer
et al. 1987; Wu & Andereck 1990; Roder et al. 1997), and the study of the effect of
time-periodic forcing on an oscillatory system (Elphick et al. 1987; Coullet et al. 1990;
Hemming & Kapral 2000).

Convection in a rotating cylindrical annulus with inhomogeneous boundaries differs
from the foregoing pattern-forming systems. The surface modulation is not a slowly
relaxing Goldstone mode as in the models with a conserved physical quantity (Siggia
& Zippelius 1981; Tribelsky & Velarde 1996; Matthews & Cox 2000). The modulation
does not result in an Ising-Bloch bifurcation as in the model with time-periodic forcing
(Elphick et al. 1987; Coullet et al. 1990; Hemming & Kapral 2000), and its amplitude
does not change with time, in contrast to the system with stochastic forcing (Meyer et al.
1987; Wu & Andereck 1990; Roder et al. 1997). To study the effect of surface topography
on the dynamics of thermal Rossby waves, the Ginzburg-Landau equation with spatially
periodic and time-independent forcing is a proper model. The equation has the form:

∂A

∂T
= β

∂2A

∂Y 2
+∆0A+D|A|2A+

(

δeikY + δ?e−ikY
)

A . (2.1)

Here T and Y are the slow time and coordinate, A is the complex amplitude, the values
of β and D are complex numbers with β = βr + iβi, D = Dr + iDi, the subscripts r and
i mark the real and imaginary parts, ∆0 ∼ (R−Rcr) is real with Rcr being the critical
Raleigh number (Cross & Hohenberg 1993; Busse & Or 1986; Or & Busse 1987; Aranson
& Kramer 2002). The forcing amplitude and the absolute value of the wave-vector are δ
and k respectively, where the asterisk marks the complex conjugate. The system (2.1) is
slightly inhomogeneous and |δ|k ¿ 1.

Without forcing, δ = 0, the values of β, D, ∆0 in the equation (2.1) can be derived
from the incompressible Navier-Stokes and energy equations for R ∼ Rcr (Busse & Or



The effect of surface topography on the nonlinear dynamics of Rossby waves 93

1986; Or & Busse 1987). In agreement with the stability criterion the real parts of β and
D obey the relations βr > 0 and Dr < 0 (Cross & Hohenberg 1993; Aranson & Kramer
2002). The dynamics of the convective rolls are descirbed by the traveling waves with
A = Ā = A0e

iqy+iγT , where

A2
0 = −

(

∆0 − βrq
2
)

Dr
, γ = −βiq

2 +DiAs . (2.2)

This solution appears for ∆0 > βrq
2, and depicts the pattern formation of thermal Rossby

waves without forcing.
If the value of ∆0 is finite and the modulation amplitude is small, |δ| ¿ |∆0|, the

explicit dependence on the Y coordinate in equation (2.1) can be eliminated. We present
the amplitude A in (2.1) in the form A = Ā+Ã, where Ā = A0e

iqy+iγT from (2.2), and the
term Ã = A1+A2+... appears due to the forcing withAn =

(

ane
−inkY + bne

inkY
)

eiqY +iγT ,
n = 1, 2, ... . In this way we obtain

A = eiqY +iγT
[

A0 + a1e
−ikY + b1e

ikY + a2e
−2ikY + b2e

2ikY + ...
]

. (2.3)

Substituting the expression (2.3) in (2.1) and expanding the equation (2.1) in terms of
small |δ/∆0|, we can derive a system of the coupled equations of the Ginzburg-Landau
type:

∂A0

∂T
=
[

f0 +DA2
0 + 2D (a1a

?
1 + b1b

?
1 + a1b1)

]

A0 + a1δ
? + b1δ , (2.4)

∂a1

∂T
= f−1 a1+db

?
1+[D (a1a

?
1 + 2b1b

?
1) a1 + 2DA0 (a

?
1a2 + a2b1 + b1b

?
2)]+A0δ+a2δ

? (2.5)

∂b1
∂T

= da?1+f
+
1 b1+[D (2a1a

?
1 + b1b

?
1) b1 + 2DA0 (a1a

?
2 + a1b2 + b?1b2)]+A0δ

?+b2δ, (2.6)

∂a2

∂T
= f−2 a2 + db?2 +

[

DA0

(

2a1b
?
1 + a2

1

)]

+ a1δ + a3δ
? , (2.7)

∂b2
∂T

= da?2 + f+
2 b2 +

[

DA0

(

2a?1b1 + b21
)]

+ b1δ
? + b3δ ... (2.8)

where f0 = ∆0 − βq2 − iγ, f±n = ∆0 − β (q ± nk)
2
− iγ + 2DA2

0, d = DA2
0, and the

Y -dependence of the values A0, an, bn has been neglected for the sake of simplicity.
The nonlinear dynamics in the system (2.4-2.8) depend on the forcing parameters and

the convection intensity, with the modulation wave-vector k being the key factor for
pattern formation. Below we briefly describe several limiting cases.

In the linear approximation in |δ/∆0| ¿ 1, the solution (2.2) satisfies equation (2.4),
while the equations (2.5,2.6) are reduced to:

∂a1

∂T
= f−1 a1 + db?1 +A0δ,

∂b1
∂T

= da?1 + f+
1 b1 +A0δ . (2.9)
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The linear system (2.9) has steady solutions with

a1 = A1 = −
A0δ

(

(

f+
1

)?
− d

)

(

f−1
(

f+
1

)?
− dd?

) , b?1 = B?
0 = −

A0δ
(

f−1 − d?
)

(

f−1
(

f+
1

)?
− dd?

) . (2.10)

The solutions (2.2,2.3,2.10) are stable for Re[σ] < 0, where the Liapunov exponents σ
obey the equation

(σ + 2f0)
[

(

σ − f−1
)

(

σ −
(

f+
1

)?
)

− dd?
]

= 0 . (2.11)

For the large-scale modulations with k/q ¿ 1, pattern formation is quite complicated.
In the interval βrq

2 < ∆0 < Fr, the pure solution with A0 from (2.2) and a1 = b1 = 0
occurs, where Fr = Fr(D,β) and Fr > βr. For ∆0 > Frq

2, this solution becomes unstable,
and the modulated pattern (2.3,2.10) appears. In the limit of (k/q) → 0, the values of
|a1|, |b1| increase as |δ/∆0|(q/k)

2, and result in a growth of the higher-order terms in
the system (2.5-2.8). A nonlinear coupling among the amplitudes an and bn yields then
a solution with |an/A0|, |bn/A0| À |δ/∆0|, yet keeping |an/A0| ¿ 1. In this case the
system (2.5-2.8) is reduced to

∂a1

∂T
= f−1 a1 + db?1 + [D (a1a

?
1 + 2b1b

?
1) a1 + 2DA0 (a

?
1a2 + a2b1 + b1b

?
2)] , (2.12)

∂b1
∂T

= da?1 + f+
1 b1 + [D (2a1a

?
1 + b1b

?
1) b1 + 2DA0 (a1a

?
2 + a1b2 + b?1b2)] , (2.13)

∂a2

∂T
= f−2 a2 + db?2 +

[

DA0

(

2a1b
?
1 + a2

1

)]

, (2.14)

∂b2
∂T

= da?2 + f+
2 b2 +

[

DA0

(

2a?1b1 + b21
)]

. (2.15)

From (2.12-2.15) we obtain

an = Ane
inGT , bn = Bne

inGT , n = 1, 2, 3 , (2.16)

with A2, B2 dependent on A1 = A1(∆0, k, q) and B1 = B1(∆0, k, q). Using the solv-
ability conditions for real A1, B1, in (2.12-2.15), we derive the dispersion relation G =
G(∆0, k, q). It is remarkable that G ∼ γ for small q and for (k/q) ¿ 1. The solutions
and their stability analysis are quite cumbersome and not presented here.

For the small-scale forcing with k/q À 1, the modulated state (2.3,2.10) is stable for
all ∆0 > 0. The nonlinear dynamics in this case are governed by terms proportional to δ
in (2.5-2.8), and the nonlinear solutions are steady. With a2 = b2 = 0, equations (2.4,2.5)
are reduced to

∂a1

∂T
= A0δ +D (a1a

?
1 + 2b1b

?
1) a1 , (2.17)
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∂b1
∂T

= A0δ
? +D (2a1a

?
1 + b1b

?
1) b1 , (2.18)

and for small but finite |δ/∆0| in the system (2.17,2.18)

a1, b1 ∼ A0|δ/∆0|
2/3 . (2.19)

We conclude that the large-scale forcing eventually results in the occurrence of Rossby
waves with quasi-periodic time-dependence. The convective pattern (2.3,2.16) consists
of three traveling waves with different group velocities. The dynamics of this pattern
depends on the convection intensity and the forcing wave-vector, yet it is independent of
the forcing amplitude. In contrast, the small-scale forcing produces spatially modulated
convective patterns with dynamics governed by the forcing amplitude.

3. Numerical results

To obtain numerical solutions of the complex amplitude A in (2.1), we non-dimensionalize
this equation first using the length of the domain L, the reference time scale ∆−1

0 , and
the initial magnitude of A0. This leads to the following equation:

∂A′

∂T ′
= β′

∂2A′

∂Y ′2
+A′ +D′|A′|2A′ + δ̃′A′ (3.1)

The initial solution of the problem has the form A = A0e
iqY , and the forcing is

defined as δ̃ = δeikY + δ?e−ikY . The non-dimensional quantities are given by A′ = A/A0,
Y ′ = Y/L, T ′ = T∆0, β

′ = β/∆0L
2, D′ = DA2

0/∆0 and δ̃′ = δ̃/∆0, and with the
wavenumbers k and q being k′ = kL and q′ = qL.

We solve equation (3.1) on a domain of length L = 10 with periodic boundary con-
ditions. We replace the complex equation by a set of two equations for the real and
imaginary parts of A. This set of equations is discretized using a second order central
difference scheme in space. A fully implicit solver is used in time.

For these computations we choose ∆0 = 100 and A0 = 1. The values of β and D
are taken to match experiments of Herrmann & Busse (1998); Westerburg & Busse
(2001). The three remaining parameters are the forcing amplitude δ and the ratio be-
tween the two wavenumbers k and q. Several cases have been computed with δ/∆0 =
0.1, 0.2, 0.4, 0.6, 0.8, 1, and (k/q) = 1/10, 1/3, 1, 3, 10. The space is discretized with a 300
points mesh, and the time step is chosen to be ∆T = 0.05.

Figure 1 presents the real part of A′ in (3.1) for the case with no forcing. The pattern
has the form of the traveling wave, and its dynamics agrees qualitatively and quantita-
tively with the solution (2.2).

Figures 2, 3, and 4 show the real part of the amplitude, and the spatial and temporal
Fourier transforms in the case of large-scale forcing with k/q = 1/3 and δ/∆0 = 0.2.
Three traveling waves with different group velocities, described in (2.19), are clearly
visible on the Figure 2. The spatio-temporal characteristics of the pattern are in good
agreement with the results in (2.16). Figure 3 shows that the asymptotic dynamics of
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Figure 1. Rossby waves with no forcing

Figure 2. Real part of the amplitude in the case of large-scale modulation

the pattern are highly nonlinear, and there exist three major spatial modes associated
with the wavevectors q, q − k and q + k. Temporal Fourier transforms of the pattern on
presented Figure 4 clearly show the existence of a low frequency, associated with small
(γ − G) ¿ γ in (2.16). The other modes on Figure 4 correspond to γ in the equation
(2.2) and (γ + G) ∼ 2γ in the solution (2.16). We conclude that the large-scale forcing
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Figure 3. Spatial Fourier transform of the amplitude in the case of large-scale modulation
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Figure 4. Temporal Fourier transform of the amplitude in the case of large-scale modulation

influences the Rossby waves significantly, and forms a pattern modulated in space and
quasi-periodically in time.

Figures 5, 6, and 7 present the real part of the amplitude, and the spatial and temporal
Fourier transforms in the case of small-scale forcing with k/q = 10 and δ/∆0 = 0.1. The
pattern formation in this case differs significantly from that of the large-scale modula-
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Figure 5. Real part of the amplitude in the case of small-scale modulation

0 5 10 15 20 25 30
0

100

200

300

400

500

600

Wavenumber

A
m

pl
itu

de

Fourier coefficients at T’=1.
Fourier coefficients at T’=100.

Figure 6. Spatial Fourier transform of the amplitude in the case of small-scale modulation

tions. Figures 5, 6, and 7 clearly show the formation of spatially modulated Rossby waves,
in agreement with the solution (2.19). Figure 6 demonstrates that the spatial dynamics
of the pattern are described by the modes associated with the wavevectors q, q − k and
q+ k. Temporal Fourier transforms of the pattern shown on Figure 7 indicate that there
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Figure 7. Temporal Fourier transform of the amplitude in the case of small-scale modulation

is only one frequency in the system, which is associated with γ in (2.2). We conclude
that the small-scale forcing modulates Rossby waves in space, (2.19).

4. Discussion

In the present work, we studied the effect of surface topography on the nonlinear
dynamics of thermal Rossby waves. The foregoing results show that the interaction of
Rossby waves with spatially modulated forcing gives rise to a quasi-periodic behavior
in space as well in time. The large-scale forcing results in the appearance of interacting
traveling waves, whose dynamics depend strongly on the forcing wavevector and weakly
on the convection intensity, and are insensitive to the forcing amplitude. In contrast, the
small-scale forcing generates spatially modulated patterns, but does not influence their
temporal dependence. In this case, the pattern dynamics are governed by the forcing
amplitude and the convection intensity.

Our model captures the main properties of the linear and weakly nonlinear solutions
obtained in Bell & Soward (1996) and Westerburg & Busse (2001). On the other hand,
the model describes the influence of modulations on the dynamics of Rossby waves in
a wide range of the forcing parameters and convection intensity, and predicts the new
properties of the nonlinear dynamics. Our results are in a good qualitative agreement
with the observations by Westerburg & Busse (2001).
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